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Abstract. A new in-situ experimental setup for damage localization and mechanical parameter
estimation has been built at two test fields, outdoors at a rooftop and in a laboratory at Leipzig
University of Applied Sciences. Excited by wind, the structure can be identified by output-
only methods. In this contribution current progress on the development of damage localization
and scaling output-only systems from a general operator notation is shown. At the beginning
damage localization based on H∞-estimation is briefly shown. Modifying this theory, system
scaling and mechanical parameter estimation is discussed afterwards. Finally, experimental
results are shown and analysed.
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1 Introduction

In structural dynamics the parametrization of a mechanical model allows to analyse system
properties and predict structural responses in certain load cases. To parametrize real life structures,
a linear-elastic mechanical model is often a well-suited approximation at an operation point,
which is modelled by mass, stiffness, and damping (M̄ , K̄, and D̄). To avoid a priori model errors
and a possible huge numerical effort, system identification allows a straightforward alternative
parametrization of a mechanical model, which the authors focus in this contribution. Directly
based on measurements, the identified system has a considerably smaller model order. Here, the
parametrization of a linear, time-invariant state space system is very advantageous, as this allows
to subsequently apply identified parameters in other techniques.

Stochastic system identification. Because deterministic excitations are cost-intensive, elabo-
rate, and sometimes impossible to apply at large-scale civil engineering structures, identification
methods based on ambient excitations (e.g. wind, traffic, waves, microseism) should be applied
instead [1]. Some stochastic system identification methods are a) stochastic realization [2],
b) stochastic subspace identification (SSI) [3], c) canonical correlation analysis (CCA) [4], and
so on. Because ambient excitations are in general unmeasurable, state space parameters A
and C can be determined only based on structural response measurements. Hence, the phys-
ical interpretation of the identified system is an important issue. A widespread approach is
the identification of modal data (free scaled mode shapes), named operational modal analysis
(OMA) [5–7]. However, without the necessity of numerical computations based on (real or
complex-conjugated) mode shapes, we focus on the development of a general, system theoretic
identification approach.

Motivation: Mechanical parameter estimation and damage localization. A new in-situ
experimental setup for damage localization and mechanical parameter estimation has been built
at two test fields, outdoors at a rooftop and in a laboratory at Leipzig University of Applied
Sciences (see figure 1 and section 4). Excited by wind, the structure can be identified by output-

(a) Wind-exposed structure at a rooftop (b) Laboratory structure

Figure 1: Experimental structures
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only methods. The authors aim to develop and verify a damage localization method based on
the state projection estimation error (SP2E) [8–11], which is insensitive to environmental and
operational conditions (EOC). While first attempts based on principal component analysis were
analysed [12], a system theoretic approach may be advantageous.

In this contribution, current progress on the development of damage localization and scaling
output-only systems from a general operator notation is shown. To begin with in section 2,
damage localization based on SP2E is briefly shown. Modifying this theory, the novel state
projections for system scaling (SP2S) method and subsequent mechanical parameter estimation
is discussed afterwards, which is based on output-only measurements and the mass perturbation
technique (repetition of measurement with known additional mass ∆M , section 3). Finally,
experimental results are shown and analysed in section 4.

Some notes on the used nomenclature. Because structural alterations are a key element
of this contribution (e.g. stiffness modifications ∆K,i and/or mass perturbations ∆M,i), the
definition of structural state i is introduced: i = 0 defines the reference and i > 0 the altered
structural state.

We focus on the application of estimation/control approaches in structural dynamics. Hence,
a more general system theoretic notation is used: The map to y from u is denoted by Tyu. By
using a linear, time-invariant state space system, Tyu may be written in frequency domain as

σx(σ) = Ax(σ) +Bu(σ)

y(σ) = Cx(σ) +Du(σ)

}
σ = (s, z) .

Based on state space parameters A, B, C, and D, the frequency response matrix function follows:

Tyu(σ) =

[
A B
C D

]
σ
= C

(
σI − A

)−1
B +D .

2 Damage localization based onH∞-estimation: State projection estimation error (SP2E)

2.1 Basis: Output-only identification

As mechanical system parameters (M̄ , K̄, and D̄) and structural excitations are unknown for
real large-scale structures, we use the SSI [3] to parametrize discrete-time state space parameters
A and C. These matrices are applied to define a discrete-time system

[
xk+1

yk

]
=

[
A I 0
C 0 I

]xkwk
vk

 , nk =

[
wk
vk

]
with

〈
nk, nk

〉
:=

[
Q S
S∗ Rv

]
. (1)

2.2 H∞-estimation: Worst-case analysis

H∞-theory leads to estimators, which are less susceptible to disturbance uncertainties. A key
element for that is to consider the so-called worst-case. Hence, one uses theH∞-norm to bound
a system Ts̃n by γ, which is equivalent to bound the largest singular value of matrix function Ts̃n,
namely

‖Ts̃n‖H∞
= sup

n

‖s̃‖2

‖n‖2

= max
ω

σ̄
(
Ts̃n(ejω)

)
< γ , s̃ = s− ŝ = L

(
x− x̂

)
= Lx̃ . (2)
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Although H∞-theory may lead to over-conservative estimators, they outperform Kalman
filters (H2 estimators), when the disturbances are unknown [13]. An important difference
to Kalman filtering is the usage of weighting parameter L, allowing different applications in
H∞-estimation [13]. For the case of filtering signals in additive noise [14] one uses L = C.

There are plenty H∞-theory approaches [13–17]. A powerful, theoretical approach is the
derivation of estimation as a special case of control by using the lower linear fractional transfor-
mation (LLFT, see figure 2) [18]:

xk+1

s̃k
yk

 =

 A
[
I 0

]
0

L
[
0 0

]
−I

C
[
0 I

]
0


︸ ︷︷ ︸

P


xk
wk
vk
ŝk

 , [
x̂k+1

ŝk

] [
A−KpC Kp

L 0

]
︸ ︷︷ ︸

K

[
x̂k
yk

]
. (3)

T s̃n = LLFT
(
P,K

)

n



A
[
I 0

]
0

L
[
0 0

]
−I

C
[
0 I

]
0


s̃

[
A − KpC Kp

L 0

]
y ŝ

Figure 2: Estimation as a special case of control

LMI based H∞-estimation. Linear matrix inequality (LMI) methods are widespread to
determineH∞-controllers [19, 20]. Based on the bounded real lemma, a γ-optimal controller K
exists in discrete-time (see equation (2)) in both equivalent expressions

∥∥∥Ts̃n(Acl,Bcl, Ccl,Dcl)∥∥∥
H∞

< γ, H =


−X−1 Acl Bcl 0

ATcl −X 0 CTcl
BTcl 0 −γ2I DTcl
0 Ccl Dcl −I

 < 0 , (4)

if the above inequality is feasible for X > 0. Hence, an optimization problem follows, namely the
minimization of γ under the above constraints, which may be solved numerically (see [21, 22]).
A numerical minimum for γ2 can be found by semidefinite programming (SDP), which may lead
to the strictly proper form [

x̂k+1

ŷk

]
=

[
Af Kf

C 0

]
︸ ︷︷ ︸

KLMI

[
x̂k
yk

]
. (5)

Riccati recursion/equation based H∞-estimation. Besides the LMI solution, the applica-
tion of indefinite metric spaces for H∞-estimation [14] is a remarkable theory. Based on the
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minimization of an indefinite quadratic form [23], this theory leads to a Riccati recursion

Pk+1 = APk

(
I −

[
L
C

]∗([
L
C

]
Pk

[
L
C

]∗
+

[
−γ2I 0

0 I

])−1 [
L
C

]
Pk

)
A∗ +Q (6a)

= A
(
P−1
k − γ

−2L∗L+ C∗C
)−1

A∗ +Q . (6b)

To determine an H∞-estimator, a convergent solution P = Pk+1 = Pk must be computed and
important existence conditions are taken into account

∀k : P̃−1
k = P−1

k − γ
−2L∗L > 0, P−1

k − γ
−2L∗L+ C∗C > 0 . (7)

Because a direct recursive computation is numerically imprecise [24], one can solve a discrete-
time algebraic Riccati equation (DARE) instead. To get a solution, the eigenvectors of an
extended symplectic pencil are used to numerically determine matrix P [25], which leads to the
a prioriH∞-estimator[

x̂k+1

ŷk

]
=

[
Ap Kp

C 0

]
︸ ︷︷ ︸

KDARE

[
x̂k
yk

]
with Kp = AP̃C∗

(
CP̃C∗ + I

)−1
, Ap = A−KpC . (8)

As γ →∞, the estimator in equation (8) becomes the well-known Kalman filter (anH2-optimal
estimator) [13].

2.3 Damage localization by state projection estimation error (SP2E) method

A difference process has been proposed for damage localization by the authors [9–11]. Process
d follows the introduced system in discrete-time

x̂0,k+1

x̂i,k+1

xi,k+1

dk

 =


Ap,0 0 Kp,0Ci 0 Kp,0

0 Ap,i Kp,iCi 0 Kp,i

0 0 Ai I 0
−C0 Ci 0 0 0


︸ ︷︷ ︸

Tdn


x̂0,k

x̂i,k
xi,k
wk
vk

 . (9)

Using state projections, a Sylvester equation must be solved, which leads to the following:[
Ap,0 0

0 Ap,i

]
Θ̄− Θ̄Ai = −

[
Kp,0

Kp,i

]
Ci , Θ̄ =

[
Y
Z

]
(10a)


x̂0,k+1

x̂i,k+1

xi,k+1

dV,k

 =


Ap,0 0 0 −Y Kp,0

0 Ap,i 0 −Z Kp,i

0 0 Ai I 0
−C0 Ci CiZ − C0Y 0 0


︸ ︷︷ ︸

TdV n


x̂0,k

x̂i,k
xi,k
wk
vk

 . (10b)

The SP2E difference process approach is a form of model reduction, namely the truncation of
estimator poles. This has been discussed by the authors [9–11] and allows to define[

xk+1

dV,k

]
=

[
Ai I 0
CT 0 0

]
︸ ︷︷ ︸

TdV n

xkwk
vk

 , CT =
[
−C0 Ci

] [Y
Z

]
= CiZ − C0Y . (11)
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As a result one determines the difference process dV taking state projections into account.
The average process power of dV can be analysed for damage localization:

P̄dV = diag
(
RdV

)
with RdV =

〈
dV,k, dV,k

〉
. (12)

The SP2E method has been verified based on experimental data and the study of damage
localization results can be found in [9–11].

3 System scaling and mechanical parameter estimation based on output-only identifica-
tion and mass perturbations

3.1 Relation of structural states in general operator notation

In this section some brief notes on the novel state projections for system scaling (SP2S)
method and mechanical parameter estimation are given (for details see [26]). To find a relation
for that, the constitutive equation of motion in structural dynamics is reordered to

ai
s
= Taf,if : M̄ai(t) + D̄vi(t) + K̄di(t) = f(t)−∆M,iai(t) . (13)

The mechanical system in reference structural state Taf,0 has the response of state i due to input
f −∆M,iai(t) after a settling time (steady state vibrations). Omitting initial values, this may be
expressed in Laplace domain by

ai(s) = Taf,0(s)
(
f(s)−∆M,iai(s)

)
, Taf,i

s
= Taf,0

(
Ip −∆M,iTaf,i

)
. (14)

In equation (14) we presuppose the same average excitation spectrum (in a stochastic sense)
for both structural states Taf,0 and Taf,i. Equation (14) is very important to relate reference and
altered structural states in one framework and a system description for the structural states is
necessary to apply the found relation, which is shown below.

3.2 State projections for system scaling method (SP2S)

A state space approach is focused below, because this allows to apply standard system analysis
techniques afterwards. Hence, by applying state space parameters Ai, Bi, Ci, and Di in equation
(14), one concludes the following in continuous-time:[

Ai Bi

Ci Di

]
s
=

[
A0 B0

C0 D0

] [
Ai Bi

−∆M,iCi Ip −∆M,iDi

]
(15a)

s
=

 A0 −B0∆M,iCi B0(Ip −∆M,iDi)
0 Ai Bi

C0 −D0∆M,iCi D0(Ip −∆M,iDi)

 (15b)

ai
s
= Taf,if :

ẋ0

ẋi
ai

 =

 A0 −B0∆M,iCi B0(Ip −∆M,iDi)
0 Ai Bi

C0 −D0∆M,iCi D0(Ip −∆M,iDi)

x0

xi
f

 . (15c)

In equation (15b) the state space system on the right-hand side has a considerably larger model
order than the left-hand side. Applying the state projection technique of equation (10), a block
diagonal form is determined:

A0Θi −ΘiAi = B0∆M,iCi (16a)[
Ai Bi

Ci Di

]
s
=

 A0 0 B0(Ip −∆M,iDi)−ΘiBi

0 Ai Bi

C0 C0Θi −D0∆M,iCi D0(Ip −∆M,iDi)

 . (16b)
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Therefore, constraints are introduced to find a solution in accordance to state projection results:

−B0∆M,iCi = ΘiAi − A0Θi (17a)
Ci = C0Θi −D0∆M,iCi (17b)
0 = B0(Ip −∆M,iDi)−ΘiBi (17c)
Di = D0(Ip −∆M,iDi) . (17d)

Using above, this leads to a solution to the model order problem of equation (15). A numerical
efficient algorithm to solve the described problem is unknown to the authors so far. Hence, a
rather theoretical approach based on the Kronecker product ⊗ is applied instead:

AXB = C −→
(
BT ⊗A

)
vec
(
X
)

= vec
(
C
)
. (18)

The first two constraints of equation (17) are applied above, while the third and fourth are not
used in the following. Using the Kronecker product approach, the set of constraints is reordered:

1. Constraint −B0∆M,iCi + A0Θi −ΘiAi = 0:

−
(
CT
i ∆T

M,i ⊗ In0

)
vec
(
B0

)
+
(

(Ini
⊗ A0)− (ATi ⊗ In0

)
)

vec
(
Θi

)
= 0 . (19)

2. Constraint −D0∆M,iCi + C0Θi = Ci:

−
(
CT
i ∆T

M,i ⊗ Ip
)

vec
(
D0

)
+
(
Ini
⊗ C0

)
vec
(
Θi

)
= vec

(
Ci
)
. (20)

Because equations (19) and (20) are defined for i, both constraints can be used multiple times.
Using Ai, Ci, and ∆M,i (i = 0, 1, . . .), both constraints are stacked together in a system of linear
equations

vec
(
B0

)
vec
(
D0

)
vec
(
Θ1

)
vec
(
Θ2

)
...

 =



−CT
1 ∆

T
M,1⊗In0

0 (In1
⊗A0)−(A

T
1 ⊗In0

) 0 ···

−CT
2 ∆

T
M,2⊗In0

0 0 (In2
⊗A0)−(A

T
2 ⊗In0

)

...
...

...
... . . .

0 −CT
1 ∆

T
M,1⊗Ip In1

⊗C0 0 ···

0 −CT
2 ∆

T
M,2⊗Ip 0 In2

⊗C0

...
...

...
... . . .



† 

0
0
...

vec
(
C1

)
vec
(
C2

)
...


.

(21)

This system of linear equations can be solved to estimate B and D of the structural reference
state (e.g. by Tikhonov regularization). The described method is called state projections for
system scaling (SP2S) and details can be found in [26].

3.3 Mechanical parameter estimation based on identified state space parameters

Using a Markov parameter approach, one may estimate mechanical properties based on
continuous-time state space parameters A, B, and C [27]:

M̂ =
(
C0A

1−m
0 B0

)−1

, K̂ = −
(
C0A

−1−m
0 B0

)−1

, D̂ = −M̂
(
C0A

2−m
0 B0

)
M̂ . (22)

Parameter m refers to the measurement type: Displacements m = 0, velocities m = 1, and
accelerations m = 2.
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3.4 Comparison to the mode shape based approach

Two important eigenvalue problems arise from the equation of motion in structural dynamics
[28], which are briefly discussed below. To understand the real mode shape based mechanical
parameter estimation problem, the eigenvalue problem(

− M̄iω
2
i,l + K̄

)
φi,l = 0 (23)

is shown first, which leads to real mode shapes Φi = [φi,1 φi,2 . . .], Φi ∈ RNdof×Ndof . A
scaling factor α can be used to compute mass-normalized mode shapes φ̄l = φlαl. Based on
identified real eigenvectors (e.g. by frequency domain decomposition), one needs scaled mode
shapes to estimate mechanical parameters by

M̂i =

[ n∑
l=1

φ̄i,lφ̄
T
i,l

]−1

, K̂ =

[ n∑
l=1

φ̄i,lφ̄
T
i,l

ω2
i,l

]−1

, D̂ =

[ n∑
l=1

φ̄i,lφ̄
T
i,l

2ζi,lωi,l

]−1

. (24)

Because real structures always have damping D̄ > 0, the eigenvalue problem in equation (23)
may be generalized to[

D̄ M̄i

M̄i 0

] [
ψi,l
ψi,lλi,l

]
λi,l +

[
K̄ 0
0 −M̄i

] [
ψi,l
ψi,lλi,l

]
= 0 . (25)

The theoretical necessary number of mode shapes is doubled, hence Ψi = [ψi,1 ψi,2 . . .],
Ψi ∈ CNdof×2Ndof . This leads to complex conjugated eigenvalues, for i denoted by Λi =
diag(λi,1, λi,1, . . .) with λl,l+1 = −ζlωl ± jωl(1− ζ2

l )0.5. Again a factor β may be used, which
allows to determine scaled mode shapes ψ̄l = ψlβl. In contrary to the mass-scaling approach,
complex mode shapes can be scaled to −45◦. Then, mechanical parameters are estimated by
analysing the sum of outer products (e.g. based on SSI):

M̂i =

[ n∑
l=1

ψ̄i,lλi,lψ̄
T
i,l

]−1

, K̂ =

[
−

n∑
l=1

ψ̄i,lψ̄
T
i,l

λi,l

]−1

, D̂ = −
n∑
l=1

M̂ψ̄i,lλ
2
i,lψ̄

T
i,lM̂ . (26)

Several methods have been developed to scale mode shapes based on the mass perturbation
technique [29–34]. To estimate mechanical parameters, an important rank problem must be
considered: If F̂ is full-rank with n ≥ p, the inverse F̂ K̂ = Ip exists. Very importantly, the rank
deficient case K̂ = F̂ † with n < p leads to F̂ F̂ † 6= Ip.

8
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4 Experimental results of a real structure

4.1 The experimental study

This section covers experimental results of mechanical parameter estimation of the laboratory
structure (see figure 1b). The proof of damage localization by SP2E has been given before
(see [10]). In this contribution the authors discussed several methods to estimate corresponding
mechanical parameters (table 1), which will be applied below. All three methods are based
on output-only measurements and mass perturbations (repetition of measurement with known
additional mass ∆M ).

Abbreviation Approach Equation
<Kronecker> Kronecker product based method applying

state projections.
(22)

<Mode I> Modal approach based on real eigenvectors. (24)
<Mode II> Modal approach employing complex eigen-

vectors.
(26)

Table 1: Discussed methods to estimate corresponding mechanical parameters

The experimental structure. To apply techniques described above, a cantilever arm (length
6.15 m) in a laboratory at Leipzig University of Applied Sciences was analysed. The modular
structure consists of six beam elements with 1 m length each (cross section IPE200, DIN EN 10
034) and were connected by bolted steel plates. Therefore, stiffness and mass alterations can be
applied using additional steel plates. Using a wind excitation by wind machines (random, sta-
tionary ambient excitation), structural acceleration responses were measured in lateral direction
by twelve uniaxial, piezoelectric accelerometers (equally spaced 100 cm, measurement position
M1 . . . M6, see figure 3).

25 100 100 100 100 100 90

615

M1 M2 M3 M4 M5 M6

[cm]

Figure 3: Mechanical system: Cantilever arm

Data processing Measured accelerations had a duration of 30 min (fs = 2 kHz) and were
analysed by Welch’s method first. For a sufficient statistical population we applied approximately
215 averages by Hanning window (L = 215). The estimated spectrum was used to identify
the output-only system: An inverse Fourier transform of spectrum Sy led to covariance matrix
function Ry, which was applied in the stochastic subspace identification method. SSI results
A and C eventually identified noise poles, which had been suppressed by model reduction
techniques afterwards. This led to the identification of six natural frequencies (bending modes in
lateral direction).
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4.2 Results: Corresponding mechanical parameter estimates

4.2.1 Corresponding mass estimate

In this study all discussed methods led to a mass estimate M̂ with a dominant main diagonal,
which corresponds to the laboratory structure. Because, corresponding mass estimates are
elaborate to analyze (e.g. interpretation of off-diagonal elements), the trace of M̂ is used below.

1 2 3 4 5 6

Simulated mass [kg]

17

0

0

0

0

0

0

32

0

0

0

0

0

0

32

0

0

0

0

0

0

32

0

0

0

0

0

0

32

0

0

0

0

0

0

30

1 2 3 4 5 6

1

2

3

4

5

6

<Kronecker> Estimated mass [kg]

12.6

3.9

-2.4

0.6

-0.5

1.2

1.2

29.8

1.7

2.9

2.4

0.6

0.4

-4

30.9

5.4

-3

-4.8

0.9

-1.6

0.4

32.3

0.5

0.8

-1.4

-1.6

0.4

1.2

32.4

0.7

-4.3

-7.9

-3.3

-3.2

0.7

30.5

<Mode I> Estimated mass [kg]

13.3

3.9

-2.6

0.7

-1.1

0.6

3.9

31.2

-0.1

-0.1

-0.6

-0.2

-2.6

-0.1

31.3

0.9

0.1

0

0.7

-0.1

0.9

31.2

1.2

0.1

-1.1

-0.6

0.1

1.2
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Figure 4: Estimated corresponding mass M̂ , for abbreviations see table 1

The results of corresponding mass estimates is given in figure 4. The Kronecker product based
method leads to trace(M̂) = 168.7 kg. Besides that, both modal approaches lead by definition to
symmetric parameter matrices with a similar trace of M̂ , trace(M̂) = 166.8 kg. The experiments
have been repeated two times and structural mass of the laboratory set-up has been repeatedly
estimated.

4.2.2 Corresponding stiffness estimate

Stiffness K̄ is a central parameter to describe mechanical systems (e.g. relation between
external static forces and measured displacements). Corresponding stiffness estimates are given
in figure 5. Although all three methods lead to a similar result in comparison to the simulated,
analytical stiffness parameters, differences between simulation and real laboratory structure
must be emphasized. Possible explanations may be: a) The real stiffness of laboratory clamping
end is not infinite, which was presupposed in the Euler-Bernoulli beam simulation, and b) the
used Euler-Bernoulli beam equation assumes a constant flexural rigidity EI , which is not exact
considering the bolted steel plate connections (figure 1b).

Essentially, the corresponding mass and stiffness estimates can be evaluated similarly. In the
results of all methods one may recognize a band parameter matrix. However, the Kronecker
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Figure 5: Estimated corresponding stiffness K̂, for abbreviations see table 1

product based method leads to a non-symmetric parameter matrix. In summary, the estimation
of corresponding stiffness has been estimated successfully.

5 Conclusions

In this contribution the current progress on the development of damage localization and scal-
ing output-only systems from a general operator notation is shown. At first damage localization
based on the state projection estimation error (SP2E) method is briefly presented. Modifying
this theory, system scaling and mechanical parameter estimation is discussed afterwards. Based
on output-only measurements and a mass perturbation technique, this allows to define a me-
chanical parameter estimation method, which is afterwards compared to two well-known modal
approaches using real and complex eigenvectors. Finally, experimental results are shown and
analysed. Identifying a real mechanical system, the applicability of the novel state projections
for system scaling (SP2S) method is confirmed. More results can be found in [9–11, 26]. Some
theoretical and practical issues are still open, which should be analysed in the future. These
studies may focus on an application at large-scale structures taking varying environmental and
operational conditions into account.
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